Overview of Health Informatics

ITI

BMI-Dept
Overview of Health Informatics

ITI, BMI-Dept

Day 2
Agenda

• For whom is the course?
• How Healthcare can be improved?
• What is informatics?
• Data, information, knowledge and wisdom
• Health informatics
• Health informatics domains
• Health informatics stakeholders
• Who is the health informatician?
• Health informatician, carrier profiles
For whom is this course?!

This course is dedicated for Healthcare stakeholders, who choose to know more about BMHI, on order to improve healthcare services provided and enrich their knowledge.
Course Outline

1. BMHI (Definition, hierarchy, importance of the field, challenges)
2. National and international Organizations concerned with BMHI
3. BMHI System Components
4. HIS (subsystems, applications)
5. Consumer Health Informatics
6. HIPAA regulations; security, safety, confidentiality and ethics related to BHMI fields
7. Structure and Imagining Informatics
Course Outline, cont.

8. BMHI Standards
9. Disease Management and Disease Registries
10. Telemedicine
11. Information Retrieval and Online Medical Resources
12. Secondary use of clinical data; Bio-surveillance and Clinical trials
13. Computational Biology and Bioinformatics
14. Managerial sciences and BMHI (OB, PM)
Required Book

Medical Informatics
Practical Guide for The Healthcare Professional
How Healthcare can be improved?

• Adopting powerful strategies
• Building new hospitals
• Scientific discoveries
• Awareness
• More Healthcare professionals
•etc.
Health Informatics, a need to change

Old Hospitals
Health Informatics, a need to change

Modern Hospitals
Health Informatics, a need to change

Old Hospital Beds
Health Informatics, a need to change

Modern Hospital beds
Health Informatics, a need to change

Old Operating Theater
Health Informatics, a need to change

Modern Operating Theater
Health Informatics, a need to change

Old Medical Record, it there!!
Health Informatics, a need to change

Today's Medical Record, it there!!
We Believe!!

Better Information Better Healthcare
What Is Informatics?!

• Oxford Pocket Dictionary: the science of processing data for storage and retrieval; information science

• Merriam Webster: the collection, classification, storage, retrieval, and dissemination of recorded knowledge

• More simply:

Informatics = people + Information + technology
Informatics, Logistics (Haux, 2004)

Information and knowledge logistics work through providing:

- the right information and knowledge
- at the right time
- at the right place
- to the right people
- in the right form
- In order to make the right decision
Informatics Vs...

[Diagram showing the relationship between Informatics, Computer Science, Biomedical Informatics, Health Informatics, Biomedical Engineering, Information Technology, and Health.]
DIKW Hierarchy

- Data
- Information
- Knowledge
- Wisdom
Data
(Bellinger, 2004)

- Raw
- Just symbols
- No significance beyond itself
- Could be in any form
Is data + their meanings
Could be Significant
Focus in data and relation between them
Knowledge
(Bellinger, 2004)

- Appropriate connection of information
- Deterministic process
- Significant and useful by itself
Wisdom (Bellinger, 2004)

- “the process by which we also discern, or judge, between right and wrong, good and bad”
- Extrapolative
- Non-deterministic
- Non-probabilistic

“Wisdom is not a product of schooling but of the lifelong attempt to acquire it” (Albert Einstein)
DIKW cont.
(Bellinger, 2004)

Understanding principles
Understanding patterns
Understanding relations
Understanding

Wisdom
Knowledge
Information
Data

Connectedness
Health Informatics

• Health informatics, Medical Informatics, Clinical Informatics and Biomedical Informatics are very related, without sharp differences.

• The field is “Relatively Young”

• The terms are new, and continuously developing

• Midway between Health (medicine) and technologies

• Many!!
Health Informatics, Definitions

HI Discipline is highly interdisciplinary

- “an evolving scientific discipline that deals with the collection, storage, retrieval, communication and optimal use of health related data, information and knowledge. The discipline utilizes the methods and technologies of the information sciences for the purposes of problem solving, decision making and assuring highest quality health care in all basic and applied areas of the biomedical sciences” (Graham, 1994)
“application of computers, communications and information technology and systems to all fields of medicine - medical care, medical education and medical research” (Collen, 1980)

“scientific field that deals with resources, devices and formalized methods for optimizing the storage, retrieval and management of biomedical information for problem solving and decision making” (Shortliffe, 1995)

“the scientific field that deals with biomedical information, data, and knowledge—their storage, retrieval, and optimal use for problem solving and decision making” (Shortliffe, 2006)
Health Informatics, Definitions cont.

- "understanding, skills and tools that enable the sharing and use of information to deliver healthcare and promote health" (BMIS, 2005)

Try to define it by yourself!!
Health Informatics, History

• The HI discipline has been founded in order to fulfill the need for incorporating new ICTs within healthcare.

• 1949, Germany, first professional organization for informatics “Deutsche Gesellschaft fur Medizinische Dokumentation, Informatik und Statistik”, link. (VUMC-DBMI)

• 1950’s, Ledley and Lusted realized that computers could be useful in diagnosis and treatment due to their archiving and processing power. (Hersh, 1992)

• 1960’s, in France, the first though about the term Medical Informatics as “Informatique Medicale”. (VUMC-DBMI)
Health Informatics, History cont.

• Mid 1960’s, origin of MEDLINE and MEDLARS
• 1970’s, Artificial Intelligence (AI) projects concerned with medicine, such as MYCIN (Pittsburg Univ.) and INTERNIST-1 (Stanford Univ.).
• 1970’s, Electronic Health Record notion appeared. (Hoyet, 2008)
• 1990’s, WWW, by Tim Berners Lee, “Backbone” for medical digital libraries, health information exchange and web-based medical applications. — It’s a revolution!
Health Informatics, History cont.

• 1991, Institute of Medicine (IOM) recommend applying EHR. (Hoyet, 2008)
• 1996, origin of PalmPilot PDA, “first truly popular handheld computing device”, extensively used in medical field. (Koblentz, 2005)
• 2003, Human Genome Project completion, starting the next step of data analysis. (HGP, 2010)
• 2004, Nationwide Health Information Network (NHIN) notion appeared, connecting all Health Informatics application i.e Interoperability. (HHS, 2010)
Sciences participating in Health Informatics!!

- Computer science
- Information sciences
- Legalizations
- Economics
- Managerial sciences
- Math/Statistics
- Medical sciences
- Communication sciences
- Social sciences
- And More are yet to come…

Health Informatics is not purely technical nor purely social.

It’s Socio-technical
<table>
<thead>
<tr>
<th>Bioinformatics</th>
<th>Imaging and Signal Analysis</th>
<th>Organizational Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Biological structure informatics</td>
<td>36. Image processing and transmission</td>
<td>66. Careflow management systems</td>
</tr>
<tr>
<td>2. Computational biology</td>
<td>37. Image recognition, registration, and segmentation methods</td>
<td>67. Care delivery systems</td>
</tr>
<tr>
<td>3. Expression profiling and microarrays</td>
<td>38. Imaging and signal standards</td>
<td>68. Cooperative design and development</td>
</tr>
<tr>
<td>5. Genomics</td>
<td>40. Model-based imaging</td>
<td>70. Ethical and legal issues</td>
</tr>
<tr>
<td>6. Linking the genotype and phenotype</td>
<td>41. Signal processing and transmission</td>
<td>71. Health services evaluation; performance and quality</td>
</tr>
<tr>
<td>7. Neuroinformatics</td>
<td>42. Virtual reality and active vision methods and applications</td>
<td>72. Organizational impact of information systems</td>
</tr>
<tr>
<td>8. Pharmacogenomics</td>
<td></td>
<td>73. Quality assessment and improvement</td>
</tr>
<tr>
<td>9. Proteomics</td>
<td></td>
<td>74. System implementation and management issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75. Technology assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Informatics</td>
<td>Innovative Technologies in Health Care</td>
<td>Patient Record</td>
</tr>
<tr>
<td>10. Barriers to clinical system</td>
<td>43. Computer-communication infrastructures</td>
<td>76. Cryptography, database security, and anonymization</td>
</tr>
<tr>
<td>implementation</td>
<td>44. Internet applications</td>
<td>77. Database access and delivery</td>
</tr>
<tr>
<td>11. Clinical systems in ambulatory</td>
<td>45. Mobile computing and communication</td>
<td>78. Database design and construction</td>
</tr>
<tr>
<td>care</td>
<td>46. Portable patient records</td>
<td>79. Data standards and enterprise data sharing</td>
</tr>
<tr>
<td>12. Clinical systems in high</td>
<td>47. Security and data protection</td>
<td>80. Patient record management</td>
</tr>
<tr>
<td>intensity care</td>
<td>48. Software agents and distributed systems</td>
<td>81. Privacy, confidentiality, and information protection</td>
</tr>
<tr>
<td>13. Careflow and process improvement</td>
<td>49. Telemedicine</td>
<td>82. Standard medical vocabularies</td>
</tr>
<tr>
<td>systems</td>
<td>50. Virtual reality</td>
<td>83. Standards for coding</td>
</tr>
<tr>
<td>14. Disease management</td>
<td>51. Wireless applications and handheld devices</td>
<td>84. Standards for data transfer</td>
</tr>
<tr>
<td>15. E-health and clinical communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Evaluation of health information systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Health data warehousing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Health information systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Integrated health and financial systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education and Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Computer-assisted medical education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Consumer health information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. E-learning or distance learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Education and training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Library information systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Medical informatics teaching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Patient education and self-care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Professional education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Information Processing and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational Behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Cognitive models and problem solving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Data visualization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Natural language understanding and text generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Human factors and usability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Human factors and user interfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Human-computer interaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. Models of social and organizational behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35. Natural language processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing Informatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61. Nursing informatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62. Nursing care systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63. Nursing vocabulary and terminology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64. Nursing education/Curriculum in nursing informatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65. Nursing documentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Health Informatics, Fields (Martín-Sanchez, 2008)

Spectrum of the informatics disciplines across time (as one moves from left to right) and over different levels of bio-complexity from atom to ecosystem (bottom-up) domains.
It's not only technology!

"technology is not the destination, it is the transportation" (Safron-AMIA)

In field of BMHI, Technology is a hulk and needs to be guided, who can?!
Health Informatics, Fields (Shortliffe, 2006)

Health Informatics

- Bioinformatics
- Clinical Informatics
- Nursing Informatics
- Imaging/structural Informatics
- Consumer Health Informatics
- Public Health Informatics
Health Informatics, Fields

• “...the computational branch of molecular biology.” (Claverie, 2005)

• “the study of how information is represented and analyzed in biological systems, starting at the molecular level” (Shortliffe, 2006)

• “field of science in which biology, computer science and information technology merge to form a single discipline” (NCBI, 2010)
Health Informatics, Fields

1- In Vivo
2- In Vitro
3- In Silico (Bioinformatics)
Health Informatics, Fields (Shortliffe, 2006)

• Focusing on Clinical care:
 – Medicine
 – Dentistry
 – Veterinary
 – ...etc

• Demanding “patient-oriented informatics applications”
“The application of biomedical informatics methods and techniques to problems derived from the field of nursing. Viewed as a subarea of clinical informatics” (Shortliffe, 2006)

“...integrates nursing science, computer science, and information science to manage and communicate data, information, and knowledge in nursing practice” (Straggers, 2002)
Nurses are strongly involved in both direct and indirect patient care.

The Nurse is a key player in healthcare.

How health informatics could help?!

Nursing Informatics status is impressive!
Health Informatics, Fields
(Shortliffe, 2006)

• “the systematic application of information and computer science and technology to public health practice, research, and learning” (Yasnoff, 2000)

• Focus on population, rather individuals i.e. Clinical Informatics

• Oriented to prevention than treatment

• Mainly governmental than private sector
Ten essential services of public health:
1. Monitor the health status of individuals in the community to identify community health problems
2. Diagnose and investigate community health problems and community health hazards
3. Inform, educate, and empower the community with respect to health issues
4. Mobilize community partnerships in identifying and solving community health problems
5. Develop policies and plans that support individual and community efforts to improve health
Ten essential services of public health, cont.:

6. Enforce laws and rules that protect the public health and ensure safety in accordance with those laws and rules.

7. Link individuals who have a need for community and personal health services to appropriate community and private providers.

8. Ensure a competent workforce for the provision of essential public health services.

10. Evaluate the effectiveness, accessibility, and quality of personal and population-based health services in a community.
Health Informatics, Fields

- “Subfield of biomedical informatics that has arisen in recognition of the common issues that pertain to all image modalities and applications once the images are converted to digital form” (Kulikowski, 1997)
- “The study of methods for representing, organizing, and managing diverse sources of information about the physical organization of the body and other physical structures, both for its own sake, and as a means for organizing other information” (Brinkley, 1991)
Health Informatics, Fields

- Both Imaging and Structural Informatics are overlapping.
- Images in medicine are fundamental.
- Source of images may be:
 - X-Ray
 - Ultrasound
 - NMR/MRI
Health Informatics, Fields

- “the branch of medical informatics that analyses consumers’ needs for information; studies and implements methods of making information accessible to consumers; and models and integrates consumers’ preferences into medical information systems” (Eysenbach, 2000)

- “a subspecialty of medical informatics which studies from a patient/consumer perspective the use of electronic information and communication to improve medical outcomes and the health care decision-making process” (AMIA, 2008)
The figure shows different ways that electronic communications can be used to link patients with various health resources, through home or a well equipped tele-health facility.
Health Informatics Stakeholders
(Hoyt, 2008)

- Insurance Companies
- Nursing and supporting Staff
- Government
- Patients/ people
- Medical Educators
- Clinicians
- Research
- Hospitals
- Technology Vendors
- Public Health
- Health Informatics
- Clinicians
- Hospitals
- Technology Vendors
- Public Health
Health Informatics Stakeholders (Hoyt, 2008)

Common goals:
• Reduce medical errors and resultant litigation
• Provide better return on investment
• Improve communication among the key players
• Improve the quality of care
• Reduce duplication of tests or prescriptions ordered
• Improve patient outcomes, like morbidity and mortality
• Standardize care among clinicians, organizations and regions
• Improve clinician productivity
• Speed up access to care and administrative transactions
• Protect privacy and ensure security
Health Informatics Stakeholders (Hoyt, 2008)

- Online searches for health information
- Web portals for storing personal medical information, making appointments, checking lab results, e-visits, etc
- Research choice of physician, hospital or insurance plan
- Online patient surveys
- Online chat, blogs, podcasts, vodcasts and support groups
- Personal health records
- Telemedicine and home Telemonitoring
Clinicians

- Medline searches
- Online resources and digital libraries
- Patient web portals, secure e-mail and e-visits
- Physician web portals
- Clinical decision support, e.g. reminders and alerts
- Electronic health records (EHRs)
- Personal Digital Assistants (PDAs) with medical software
- Telemedicine and telehomecare
- Online continuing medical education (CME)

- Voice recognition software
- Electronic (e)-prescribing
- Disease management and registries
- Picture archiving and communication systems (PACS)
- Pay for performance
- Health Information Organizations (HIOs)
- E-research
Health Informatics Stakeholders (Hoyt, 2008)

- Patient enrollment
- Electronic appointments
- Electronic billing process
- EHRs
- Web based credentialing
- Telehomecare monitoring
- Practice management software
- Secure patient-office e-mail communication
- Electronic medication administration record
- Online educational resources and CME
- Disease registries
• Incident reports
• Syndromic surveillance as part of bio-terrorism program
• Establish link to all public health departments (Public Health Information Network)
• Geographic information systems to link disease outbreaks with geography
Health Informatics Stakeholders (Hoyt, 2008)

- Nationwide Health Information Network
- Information technology pilot projects
 - Disease management
 - Pay for performance
 - Electronic health records and personal health records
 - Electronic prescribing
- “Ethical and Legal issues”
Health Informatics Stakeholders (Hoyt, 2008)

- Online medical resources for clinicians, patients and staff
- Online CME
- Medline searches
- Video teleconferencing, web conferencing, podcasts, etc
Health Informatics Stakeholders
(Hoyt, 2008)

- Electronic claims transmission
- Trend analysis
- Physician profiling
- Information systems for “pay for performance”
- Monitor adherence to clinical guidelines
- Monitor adherence to preferred formularies
- Promote claims based personal health records and information exchanges
- Reduce litigation by improved patient safety through fewer medication errors
Health Informatics Stakeholders (Hoyt, 2008)

Hospitals

- Interoperable electronic health records
- Electronic billing
- Information systems to monitor outcomes, length of stay, disease management, etc
- Bar coding and radio frequency identification (RFID) to track patients, medications, assets, etc
- Wireless technology

- e-intensive care units
- Patient and physician portals
- E-prescribing
- Health Information Organizations (HIOs)
- Telemedicine
- Picture archiving and communication systems (PACS)
Health Informatics Stakeholders (Hoyt, 2008)

- Database creation to study populations, genetics and disease states
- Online collaborative web sites e.g. Microsoft SharePoint
- Web services to pull together multiple participants at e.g. the National Institute of Health
- Electronic forms e.g. Microsoft InfoPath, IBM Lotus forms
- Software for statistical analysis of data e.g. SPSS
- Literature searches
- Randomization using software programs
- Improved subject recruitment using EHRs and e-mail
- Online submission of grants
Health Informatics Stakeholders (Hoyt, 2008)

- Applying new technology innovations in the field of medicine: hardware, software, genomics, etc
- Data mining
- Interoperability
Health Informatics Stakeholders (Hoyt, 2008)

- Insurance Companies
- Nursing and supporting Staff
- Government
- Patients/people
- Medical Educators
- Clinicians
- Research
- Hospitals
- Technology Vendors
- Public Health

Health Informatics

Informatician
Who is the Health Informatician?!
Time to ask this question

- Health Informatician or Informatisit is the one coordinating, synchronizing and managing different efforts provided by different health informatics stakeholders.
- In other word “Orchestrering”.

![Diagram of interconnected people]
Why Health Informatics as a career?!

• There is a huge need
 – Big incidence of preventable medical errors, WHO, 1/10 patients
 – More hospitals go through automation
 – Government needs more control

• It’s a new discipline, so need more candidates at:
 – Hospitals
 – MoH
 – Vendors
 – Etc...
 There is a space for many (Physicians, Nurses, Pharmacists, IT-cians, ...etc)!

• Many initiatives are arising (Telemedicine, NHIN, EHR, ...etc)

• Very interesting, exciting and dynamic!

• Income...!!
Health informatician, Carrier Profiles (BioHealthmatics)

1. Medical Informatics Program Designer
2. Clinical Systems Analyst
3. IT Clinical Process Engineer
4. IS Clinical Project Leader
5. SW Developer
6. IT Training Director
7. Help Desk Assistant
8. ...etc.
1. Medical Informatics Program Designer:

Working among a research team in designing & developing SW programs such as: drug database and database management system to support CDSs, systems to support RHIOs and radiology information systems. These programs gather and process clinical data and finally report the results to the end-user. Medical Informatics Program Designer utilizes his gained knowledge on Information Retrieval, Database Management Systems and support systems in designing the required program specifications.
Health informatician, Carrier Profiles cont.
(BioHealthmatics)

2. Clinical Systems Analyst:

- Gathering end user requirements and recommendations on the currently implemented HIS/or planned HIS. Utilizing her/his Medical informatics background in identifying the facing problems and hospital precise requirements to the HIS vendors;
- Developing, implementing and evaluating the HISs used within the healthcare facility;
- Pre and post go-live support to different stakeholders regarding HIS;
- Periodic checking and troubleshooting any problems regarding the HIS, ranging from human-ware and software to physical infrastructure related to the HIS, and
- Making recommendations about the best HIS to be used and the recommended customization including technical and confidentiality/security issues
3. IT Clinical Process Engineer:

Designing the blueprints for data-flow across the healthcare facility. These blueprints contain the developed/enhanced systems to achieve the optimal/customized information system across the healthcare facility. IT Clinical Process Engineer works on hardware, software and human-ware related to the HIS. IT Clinical Process Engineer participates with IT and Management staff in order to practically implement these blueprints.
4. IS Clinical Project Leader:

Leading the team to design, develop and evaluate clinical projects. IS Clinical Project leader plan, schedule, direct, monitor, coordinate the team's activities in addition to identifying/allocating resources to manage and implement the project. She/he is also responsible to develop milestones necessary for ongoing project evaluation as well as reporting about the project to stakeholders.
Health informatician, Carrier Profiles (BioHealthmatics)

5. SW Developer:

Participating with the clinical-programs developing team members in developing different Software that support clinical processes utilizing her/his Software Engineering and Programming skills.
Health informatician, Carrier Profiles
(BioHealthmatics)

6. IT Training Director:

Is responsible for making short and long term training plans, developing, implementing and evaluating these plans. IT Training Director collaborates with the hospital manager and HR staff in order to achieve these goals.
Health informatician, Carrier Profiles (BioHealthmatics)

7. Help Desk Assistant:

• Provides a wide range of IT support to healthcare-facilities stakeholders, ranging from basic computer skills to deep HIS functionalities usage.

• She/he is playing a very important and appreciated role.
What else?!
Plagiarism

• Please visit:
 http://wps.prenhall.com/hss_understand_plagiarism_1/

• Then send the result to the supervisor at:
 hi.fellowship@gmail.com
Tasks

• Read the required papers
• Investigate more about other carrier profiles
• Prepare a presentation about your working environment, highlighting the new roles according to carrier profiles discussed today
Next Saturday

• Short quiz
• Students’ Presentations
• Debates about the papers
Thanks
By: ITI-BMI Dept.
hi.fellowship@gmail.com